Ma

KEY STAGE

3-5

2000

Mathematics test

Paper 1

Calculator not allowed

Last name

School

Remember

- The test is 1 hour long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber and a ruler.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker's use only

Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You **must not** use a calculator to answer any question in this test.

1. This question is about money called euros.

Write the total number of euros in each box.

The first one is done for you.

A sequence of numbers decreases by 3 each time. 2.

Write the missing numbers in the sequence below.

You can use the number line on the right to help you.

2 marks

3. Here is part of the 36 times table.

$$1 \times 36 = 36$$

$$2 \times 36 = 72$$

$$3 \times 36 = 108$$

$$4 \times 36 = 144$$

$$5 \times 36 = 180$$

$$6 \times 36 = 216$$

$$7 \times 36 = 252$$

$$8 \times 36 = 288$$

$$9 \times 36 = 324$$

$$10 \times 36 = 360$$

Use the 36 times table to help you work out the missing numbers.

1 mark

1 mark

4. The table shows feeding times for some animals in a zoo.

	Start of feeding times			Length of feeding times
Elephants	11:15am	2:15pm	3:20pm	15 minutes
Giraffes	12:20 pm	2:30pm		15 minutes
Otters	1:00 pm			10 minutes
Seals	1:00 pm	4:00 pm		10 minutes
Tigers	2:30 pm			30 minutes

(a) The first feeding time for **giraffes** starts at 12:20 pm.

At what time does it finish?

1 mark

(b) One feeding time **finishes** at 3:00 pm.

Which animal's feeding time is this?

1 mark

(c) A visitor arrives at the zoo at **1:45pm**.

How many minutes later does the next feeding time for **elephants** start?

(d) A different visitor arrives at the zoo at 12:30 pm.

She wants to watch feeding times for elephants, otters and seals that day.

Write three feeding times that she could watch.

Otters at _____ : ____

Seals at _____ : ____

1 mark

5. Work out

1 mark

6. In America, there are coins each worth 25 cents.

These coins are called **quarters** because four of them make one dollar.

(a) Altogether, how many quarters make 3 dollars?

1 mark

(b) Laura has 20 quarters.

How many dollars is that?

1 mark

(c) Dev wants to change **10 dollars** into quarters.

How many quarters should he get?

7. (a) Tick (\checkmark) all the numbers below that **divide by 5** with no remainder.

1 marl

(b) Tick (\checkmark) all the numbers below that **divide by 3** with no remainder.

1 mark

(c) Tick (\checkmark) all the numbers below that **divide by 15** with no remainder.

8. The table shows the approximate populations of five different places.

Place	Approximate population	
London	7 000 000	
Sheffield	700 000	
Harrogate	70 000	
Ash Vale	7 000	
Binbrook	700	

(a)	Which o	of the places	has a	population	of about	seventy	thousand?
-----	---------	---------------	-------	------------	----------	---------	-----------

1 mark

(b) Use the table to complete these sentences.

The population of **Harrogate** is about **10 times** as big as

the population of _____

The population of ______ is about **100 times** as big as

the population of Harrogate.

The population of **Sheffield** is about ______ times as big as

2 marks

the population of Ash Vale.

https://www.SATs-Papers.co.uk

Here are the rules for a number grid. 9.

Use the rules to write the missing numbers in these number grids.

3 marks

10. The lengths of babies are measured at different ages.

The graph shows the longest and shortest a baby boy is likely to be.

(a) Write the missing numbers below.

A baby boy is **8 weeks old**.

The **longest** he is likely to be is about _____ cm.

1 mark

The **shortest** he is likely to be is about _____ cm.

1 mark

(b) A 34 week old baby boy is 72cm long.

Put a cross on the graph to show this information.

11. Here are six number cards.

2

4

6

8

10

12

Choose two of these six cards to (a) make a fraction that is equivalent to $\frac{1}{3}$

1 mark

Choose two of these six cards to make a fraction that is greater than $\frac{1}{2}$ but less than 1

The shape below is a regular pentagon. 12.

All five sides are exactly the same length.

Measure accurately one of the sides, then work out the perimeter of the pentagon.

Perimeter = cm

1 mark

https://www.SATs-Papers.co.uk

13.	(a)	A three-digit number is a multiple of 4	
		What could the number be?	
		Give an example.	
		Now give a different example.	
			 1 mark
	(b)	A two-digit number is a factor of 100	
		What could the number be?	
		Give an example.	
			1 mark
		Now give a different example.	
			 1 mark

1 mark

14. (a) Write the answer to this calculation.

(b) Now write a number in each box to make this calculation correct.

The three numbers must be the **same**.

15. Sam says:

The **only** four-sided shape with four right angles is a square.

Is Sam correct?

Explain your answer.

16. (a)	When $x = 8$, what is the value of $5x$? Tick (\checkmark) the correct box below.						
	5 13 40 58 None of these	ırk					
(b)	When $x = 8$, what is the value of $3x - x$? Tick (\checkmark) the correct box below.						
	0 3 16 30 None of these	ırk					
(c)	When $x = 8$, what is the value of x^2 ? Tick (\checkmark) the correct box below.						
	8 10 16 64 None of these						

Lisa uses a grid to multiply 23 by 15 17.

×	20	3
10	200	30
5	100	15

$$200 + 100 + 30 + 15 = 345$$

Answer: 345

Now Lisa multiplies two different numbers.

Complete the grid, then give the answer below.

×		40	3
30			
	600		18

Answer:

3 marks

18. Fred has a bag of sweets.

Contents

- 3 yellow sweets
- 5 green sweets
- 7 red sweets
- 4 purple sweets
- 1 black sweet

He is going to take a sweet from the bag at random.

(a) What is the **probability** that Fred will get a **black** sweet?

1 mark

(b) Write the missing **colour** in the sentence below.

The probability that Fred will get a _____ sweet is $\frac{1}{4}$

19. Write a number in each box to make the calculations correct.

1 mark

_	=	-8

1 mark

20. A rectangle has an area of 24 cm²

How long could the sides of the rectangle be?

Give three different examples.

___ cm and ____ cm

_____ cm and ____ cm

_____ cm and ____ cm

2 marks

21. (a) Write the missing numbers.

2 marks

(b) Work out 56% of 80 You can use part (a) to help you.

22. Look at this equation.

$$y = 2x + 10$$

When x = 4, what is the value of y?

1 mark

(b) When x = -4, what is the value of y?

1 mark

Which equation below gives the **same** value of y for both x = 4 and x = -4? Put a ring round the correct equation.

$$y = 2x$$

$$y = 2x \qquad \qquad y = 2 + x \qquad \qquad y = x^2 \qquad \qquad y = \frac{x}{2}$$

$$v = x^2$$

$$y = \frac{x}{2}$$

23. The diagram shows four different sized barrels.

Write the missing fractions as simply as possible.

The first one is done for you.

Barrel **C** holds $\frac{1}{2}$ of the amount barrel **B** holds.

Barrel **D** holds of the amount barrel **B** holds.

Barrel **C** holds of the amount barrel **A** holds.

Barrel **B** holds of the amount barrel **A** holds.

23

END OF TEST